

GCE AS MARKING SCHEME

SUMMER 2023

**AS
FURTHER MATHEMATICS
UNIT 2 FURTHER STATISTICS A
2305U20-1**

INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS FURTHER MATHEMATICS

UNIT 2 FURTHER STATISTICS A

SUMMER 2023 MARK SCHEME

Qu.	Solution	Mark	Notes
1 (a)	$\begin{aligned} E(4Y - 2X + 1) &= 4E(Y) - 2E(X) + 1 \\ &= 4 \times 10 - 2 \times 17 + 1 \\ &= 7 \end{aligned}$	M1 A1	Use of
(b)	$\begin{aligned} \text{Var}(4Y - 5X + 3) &= 4^2\text{Var}(Y) + 5^2\text{Var}(X) \\ &= 16 \times 16 + 25 \times 64 \\ &= 1856 \end{aligned}$	M1 A1	cao
(c)	$\begin{aligned} E(X^2) &= \text{Var}(X) + (E(X))^2 \\ E(X^2) &= 64 + 17^2 \\ E(X^2) &= 353 \end{aligned}$ $\begin{aligned} E(X^2Y) &= E(X^2) \times E(Y) \\ E(X^2Y) &= 353 \times 10 \\ E(X^2Y) &= 3530 \end{aligned}$	M1 A1	Use of FT their $E(X^2)$ provided $\neq 17^2$ cao
		Total [7]	

Qu.	Solution	Mark	Notes
2(a)	$\bar{x} = 14$ $\bar{y} = 8$ $b = \frac{20 - 8}{19 - 14}$ $b = 2.4$ Equation of regression line is $y - 20 = 2.4(x - 19)$ $y = 2.4x - 25.6$ *ag <u>1st ALTERNATIVE METHOD</u> $y = mx + c$ $20 = 2.4 \times 19 + c$ $c = -25.6$ $y = 2.4x - 25.6$ *ag <u>2nd ALTERNATIVE METHOD</u> $y = bx + a$ $20 = 19b + a$ $\frac{240}{30} = \frac{420}{30}b + a$ Solve simultaneously to get $a = -25.6$ and $b = 2.4$ $y = 2.4x - 25.6$ *ag When $x = 26$ $y = 2.4 \times 26 - 25.6$ $y = 36.8$	B1 M1 A1 M1 A1 (M1) (A1) (M1) (B1) (A1) (A1) E1 E1 Total [8]	Both convincing oe convincing oe convincing For 1 st equation For sight of $\frac{240}{30}$ and $\frac{420}{30}$ For correct equations
(b)	Comment on linearity e.g. Scatter diagram may not be linear. Correlation might be weak. Comment on range of x values. e.g. 26 may be beyond the range of observed x values.	E1 E1	

Qu.	Solution	Mark	Notes
3(a)	<p>(Let the random variable X be the lifetime in years of a hair dryer.)</p> $\lambda = \frac{1}{2} = 0.5$ $P(1.8 \leq X \leq 2.5) = \int_{1.8}^{2.5} 0.5e^{-0.5x} dx$ $= [-e^{-0.5x}]_{1.8}^{2.5}$ $= 0.1201$ <p>OR</p> $P(1.8 \leq X \leq 2.5) = F(2.5) - F(1.8)$ $= (1 - e^{-0.5 \times 2.5}) - (1 - e^{-0.5 \times 1.8})$ $= 0.1201$	B1 M1 A1 A1	FT their λ for M1A1 Alternative M1A1 $e^{-0.5 \times 1.8} - e^{-0.5 \times 2.5}$ Limits required cao, 3sf required
(b)	$P(X \geq k) = 0.2$ or $P(X < k) = 0.8$ $1 - e^{-0.5k} = 0.8$ $e^{-0.5k} = 0.2$ $-0.5k = \ln 0.2$ $k = 3.2$ <p>OR</p> $P(X < k) = \int_0^k 0.5e^{-0.5x} dx = 0.8$ $[-e^{-0.5x}]_0^k = 0.8$ $(-e^{0.5k}) - (-1) = 0.8$ $0.2 = e^{-0.5k}$ $\ln 0.2 = -0.5k$ $k = 3.2$	M1 M1 A1 (M1)	FT their λ for M1M1 Attempt to use of cao, oe (eg. $2\ln 5$) Or integrating between k and ∞ and setting = 0.2
		(A1)	cao

Qu.	Solution	Mark	Notes
3(c)	<p>Let the random variable Y be the number of hair dryers replaced in 5 years. $Po(2.5)$ over 5 years</p> $P(Y > 3) = 1 - P(Y \leq 3)$ $P(Y > 3) = 1 - 0.75758$ $P(Y > 3) = 0.24242$	B1 M1 A1	FT their 2.5 for discrete distribution cao
(d)	<p>Valid assumption e.g. Jon doesn't think the quality is so poor that he buys a different brand. The hair dryers bought weren't from a faulty batch. The quality of the hair dryers hasn't improved in five years. Manufacturing methods haven't changed. The hair dryers still last on average 2 years. The replacement is a new hair dryer (not a used one).</p>	E1	
		Total [11]	

Qu.	Solution	Mark	Notes																												
5 (a)	Two appropriate circumstances. e.g. When the data are ordinal. e.g. When the data are not bivariate normal.	B2	B1 for one circumstance.																												
(b)(i)	H_0 : there is no association between the rank given by the farmer and the price. H_1 : there is an association between the rank given by the farmer and the price. 5% two tailed critical value = $(\pm)0.8286$ Since $0.9429 > 0.8286$ there is sufficient evidence to reject H_0 . There is sufficient evidence to suggest that there is an association between the rank given by the farmer and price.	B1 B1 E1	Both. Do not allow correlation. Comparing TS to CV FT their CV Comment in context Only award if previous 3 B1 have been awarded																												
(ii)	<table border="1" data-bbox="230 848 949 1201"> <thead> <tr> <th>Tractor</th><th>Farmer's rank</th><th>PTO rank (highest to lowest)</th><th>PTO rank (lowest to highest)</th></tr> </thead> <tbody> <tr> <td>A</td><td>1</td><td>4</td><td>3</td></tr> <tr> <td>B</td><td>6</td><td>3</td><td>4</td></tr> <tr> <td>C</td><td>5</td><td>5</td><td>2</td></tr> <tr> <td>D</td><td>4</td><td>6</td><td>1</td></tr> <tr> <td>E</td><td>2</td><td>1</td><td>6</td></tr> <tr> <td>F</td><td>3</td><td>2</td><td>5</td></tr> </tbody> </table> $\sum d^2 = 24 \quad \text{or} \quad \sum d^2 = 46$ $r_s = 1 - \frac{6 \times 24}{6 \times 35} \quad \text{or} \quad r_s = 1 - \frac{6 \times 46}{6 \times 35}$ $r_s = \pm 0.3143 \quad \text{or} \quad \pm \frac{11}{35}$	Tractor	Farmer's rank	PTO rank (highest to lowest)	PTO rank (lowest to highest)	A	1	4	3	B	6	3	4	C	5	5	2	D	4	6	1	E	2	1	6	F	3	2	5	B1	Correct values for one set of PTO ranks
Tractor	Farmer's rank	PTO rank (highest to lowest)	PTO rank (lowest to highest)																												
A	1	4	3																												
B	6	3	4																												
C	5	5	2																												
D	4	6	1																												
E	2	1	6																												
F	3	2	5																												
(iii)	Two valid comment. e.g. The PTO variable isn't very strongly associated with the farmer's ranks so may not be worth analysing. e.g. The salesman doesn't need to work that hard because the farmer already prefers the most expensive tractors. e.g. because the number of tractors in the sample is small, the salesman should not place too much reliance on the results.	B1 M1 A1 E2	si FT their '24' or '46'																												
		Total [12]																													

Qu.	Solution	Mark	Notes																		
6 (a)	H_0 : The data can be modelled by the binomial distribution $B(20, 0.1)$. H_1 : The data cannot be modelled by the binomial distribution $B(20, 0.1)$.	B1	or equivalent, must state $B(20, 0.1)$																		
(b)(i)	Expected frequencies are $(f = (P(X = 0) \times 110)$ $f = 13.37$ $(g = (P(X = 2) \times 110)$ $g = 31.37$	B1	Accept 13.4																		
(ii)	Combine classes with expected frequencies less than 5	B1	Accept 31.4																		
	<table border="1"> <thead> <tr> <th>Number of boats not taken out.</th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4 or more</th> </tr> </thead> <tbody> <tr> <td>Obs</td> <td>10</td> <td>35</td> <td>29</td> <td>25</td> <td>11</td> </tr> <tr> <td>Exp</td> <td>13.37</td> <td>29.72</td> <td>31.37</td> <td>20.91</td> <td>14.63</td> </tr> </tbody> </table>	Number of boats not taken out.	0	1	2	3	4 or more	Obs	10	35	29	25	11	Exp	13.37	29.72	31.37	20.91	14.63	M1	SC for solution that does not combine classes. (M0M1m1A0B1B1m1A0)
Number of boats not taken out.	0	1	2	3	4 or more																
Obs	10	35	29	25	11																
Exp	13.37	29.72	31.37	20.91	14.63																
	<p>Use of χ^2 stat = $\sum \frac{(O-E)^2}{E}$ OR $\sum \frac{O^2}{E} - N$</p> $= \frac{(10 - 13.37)^2}{13.37} + \frac{(35 - 29.72)^2}{29.72} + \frac{(29 - 31.37)^2}{31.37} + \frac{(25 - 20.91)^2}{20.91} + \frac{(11 - 14.63)^2}{14.63}$ $= 3.667\dots$	M1	Must see at least 2 terms added																		
		m1	$= \frac{10^2}{13.37} + \frac{35^2}{29.72} + \frac{29^2}{31.37} + \frac{25^2}{20.91} + \frac{11^2}{14.63} - 110$																		
		A1	cao 3.66760 if unrounded values used.																		
	DF = 4	B1																			
	5% CV = 9.488	B1	Accept other test levels 1% CV = 13.277 10% CV = 7.779																		
	Since $3.667 < 9.488$ there is insufficient evidence to reject H_0 .	m1	Dep on 2 nd M1																		
	Insufficient evidence to reject the suggestion that the number of boats not taken out each day can be modelled by the binomial model $B(20, 0.1)$	A1	cso provided B1 awarded in (a) A0 for categorical statements																		

Qu.	Solution	Mark	Notes
6(c) (i)	Let the random variable Y be the number groups that turn up expecting to take a boat out. $Y \sim B(22,0.9)$	B1	May be seen or implied in (ii)
(ii)	Let the random variable S be the income of the company in pounds. Values for s are 330, 310 and 290 $\begin{aligned} P(S = 330) &= P(Y \leq 20) \\ &= 0.6608 \end{aligned}$ $\begin{aligned} P(S = 310) &= P(Y = 21) \\ &= 0.2407 \end{aligned}$ $\begin{aligned} P(S = 290) &= P(Y = 22) \\ &= 0.0985 \end{aligned}$ $\begin{aligned} E(S) &= 330 \times 0.6608 + 310 \times 0.2407 + 290 \times 0.0985 \\ &= £321.25 \end{aligned}$	B1 B1 B1 B2 M1A1 A1	All 3 values and no others Recognising link between income and the probability of the number of groups who turn up to take a boat, si If using $W \sim B(22,0.1)$, probabilities are $P(W \geq 2) = 0.6608$ $P(W = 1) = 0.2407$ $P(W = 0) = 0.0985$ B2 for three correct probabilities. B1 for one correct probability. M1 for one correct term and addition.
	<u>Alternative solution</u> Let the random variable T be the loss of the company in pounds. Values for t are (0,) 20 and 40 $\begin{aligned} P(T = 0) &= P(Y \leq 20) \\ &= 0.6608 \end{aligned}$ $\begin{aligned} P(T = 20) &= P(Y = 21) \\ &= 0.2407 \end{aligned}$ $\begin{aligned} P(T = 40) &= P(Y = 22) \\ &= 0.0985 \end{aligned}$ $\begin{aligned} E(T) &= (0 \times 0.6608) + 20 \times 0.2407 + 40 \times 0.0985 \\ &= £8.75 \end{aligned}$ Net income ($= £330 - £8.75$) = £321.25	(B1) (B1) (B2) (M1A1) (A1)	All 3 values and no others. Recognising link between loss and the probability of the number of groups who turn up to take a boat, si If using $W \sim B(22,0.1)$, probabilities are $P(W \geq 2) = 0.6608$ $P(W = 1) = 0.2407$ $P(W = 0) = 0.0985$ B2 for three correct probabilities. B1 for one correct probability. M1 for one correct term and addition.
(d)	Valid reason. e.g. The manager is justified because the expected income is greater than $£15 \times 20 = £300$	E1 Total [20]	Accept "Not justified" with appropriate reason such as "not a long term strategy because it will harm the brand." FT their $E(S)$